24x资源网

VIP
基于Python玩转人工智能最火框架  TensorFlow应用实践

【6776】-基于Python玩转人工智能最火框架 TensorFlow应用实践

  • 本站均为资源介绍,仅限用于学习和研究,不得将上述内容用于商业或者非法用途,
  • 否则一切后果请用户自负。您必须在下载后的24个小时之内,从您的电脑中彻底删除
  • 如果喜欢该资源请支持正版。如发现本站有侵权违法内容,请联系后查实将立刻删除。
  • 资源简介:基于Python玩转人工智能最火框架 TensorFlow应用实践
  • 详细描述

    基于Python玩转人工智能最火框架  TensorFlow应用实践


    第1章 课程整体介绍
    课程背景简介,项目成果演示,知识点和软件简介,让大家对接下来的学习心中有数
     
     1-1 课程整体介绍及导学
    第2章 人工智能基础知识
    人工智能、神经网络、机器学习、深度学习、激活函数、过拟合、卷积神经网络、循环神经网络等知识的循序渐进讲解。培养大家对课程的兴趣,了解人工智能前景,对人工智能抱持正确态度
     
     2-1 什么是人工智能 
     2-2 人工智能前景 
     2-3 人工智能需要的基本数学知识 
     2-4 人工智能简史
     2-5 AI、机器学习和深度学习的关联
     2-6 什么是机器学习
     2-7 面对AI,我们应有的态度
     2-8 什么是过拟合
     2-9 什么是深度学习
    第3章 TensorFlow简介和开发环境搭建
    TensorFlow是什么,TensorFlow原理和前景,TensorFlow和其他框架的对比(例如 Theano,ScikitLearn,Keras,Caffe2,PyTorch等)。开发环境搭建,并提供讲师已经配置好开发环境的虚拟机镜像
     
     3-1 什么是TensorFlow
     3-2 TensorFlow和其他机器学习库的对比1
     3-3 如何学习TensorFlow
     3-4 TensorFlow前景
     3-5 如何使用课程提供的虚拟机文件
     3-6 安装VirtualBox
     3-7 安装Ubuntu
     3-8 配置Ubuntu系统
     3-9 安装Python
     3-10 安装TensorFlow(上)
     3-11 安装TensorFLow(下)
     3-12 安装Python类库
    第4章 TensorFlow原理与进阶(代码实践)
    TensorFlow核心概念,TensorFlow激励函数,TensorFlow构建神经网络,TensorFlow优化器,可视化利器TensorBoard,TensorFlow解决过拟合,TensorFlow实现卷积神经网络和循环神经网络等。通过生动图文原理解释和实例,循序渐进掌握TensorFlow
     
     4-1 从HelloWorld开始
     4-2 TensorFlow的编程模式
     4-3 TensorFlow的基础结构
     4-4 图和会话
     4-5 Python常用库Numpy的使用
     4-6 什么是Tensor(上)
     4-7 什么是Tensor(下)
     4-8 图和会话原理及案例(上)
     4-9 图和会话原理及案例(下)
     4-10 可视化利器TensorBoard(上)
     4-11 可视化利器TensorBoard(下)
     4-12 酷炫模拟游乐园PlayGround
     4-13 常用Python库Matplotlib
     4-14 综合小练习:梯度下降解决线性回归(上)
     4-15 综合小练习:梯度下降解决线性回归(中)
     4-16 综合小练习:梯度下降解决线性回归(下)
     4-17 激活函数(上)
     4-18 激活函数(下)
     4-19 动手实现CNN卷积神经网络(一)
     4-20 动手实现CNN卷积神经网络(二)
     4-21 动手实现CNN卷积神经网络(三)
     4-22 动手实现CNN卷积神经网络(四)
     4-23 动手实现CNN卷积神经网络(五)
     4-24 动手实现RNN-LSTM循环神经网络(一):背景和知识点
     4-25 动手实现RNN-LSTM循环神经网络(二):编写实用方法(上)
     4-26 动手实现RNN-LSTM循环神经网络(三):编写实用方法(中)
     4-27 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)1
     4-28 动手实现RNN-LSTM循环神经网络(四):编写实用方法(下)2
     4-29 动手实现RNN-LSTM循环神经网络(五):编写神经网络模型(上)
     4-30 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)1
     4-31 动手实现RNN-LSTM循环神经网络(六):编写神经网络模型(中)2
     4-32 动手实现RNN-LSTM循环神经网络(七):编写神经网络模型(下)
     4-33 动手实现RNN-LSTM循环神经网络(八):编写训练方法(上)
     4-34 动手实现RNN-LSTM循环神经网络(九):编写训练方法(下)
     4-35 动手实现RNN-LSTM循环神经网络(十):编写测试方法
     4-36 动手实现RNN-LSTM循环神经网络(十一):实际训练和测试
    第5章 案例一 会作曲的人工智能
    结合RNN-LSTM开发能作出动听旋律的炫酷人工智能:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试
     
     5-1 背景和知识点简介
     5-2 音乐和数学的联系
     5-3 什么是MIDI文件
     5-4 配置开发环境
     5-5 编写转换MIDI到MP3的方法
     5-6 Python音乐库Music21的使用和测试方法
     5-7 编写整个神经网络模型
     5-8 编写从训练文件获取音符的方法
     5-9 编写从预测数据来生成音乐的方法
     5-10 编写训练神经网络的方法(一)
     5-11 编写训练神经网络的方法(二)
     5-12 编写训练神经网络的方法(三)
     5-13 编写神经网络生成音乐的方法(一)
     5-14 编写神经网络生成音乐的方法(二)
     5-15 纯TensorFlow版的预告
    第6章 案例二 会Photoshop的人工智能
    结合DCGAN开发会PS的人工智能。从此P图不用愁,分分钟搞定N多图片的创建:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试
     
     6-1 背景和知识点简介
     6-2 配置开发环境
     6-3 什么是GAN(生成对抗网络)
     6-4 什么是DCGAN
     6-5 编写DCGAN中的判别器模型(上)
     6-6 编写DCGAN中的判别器模型(下)
     6-7 编写DCGAN中的生成器模型
     6-8 编写训练神经网络的方法(上)
     6-9 编写训练神经网络的方法(下)
     6-10 编写神经网络生成图片的方法
     6-11 代码完成和测试模型
     6-12 纯TensorFlow版的预告
    第7章 案例三 会开3D赛车的人工智能
    结合深度强化学习中的A3C实现会开3D赛车的人工智能,学会自动驾驶:背景和知识点简介,开发环境配置,原理讲解,代码实现,训练模型和测试
     
     7-1 背景和知识点简介
     7-2 强化学习的经典实验环境
     7-3 配置开发环境(1)
     7-4 配置开发环境(2)
     7-5 什么是强化学习
     7-6 什么是Q Learning
     7-7 Q-Learning 实现机器人走迷宫:创建环境
     7-8 Q-Learning 实现机器人走迷宫:决策算法(1)
     7-9 Q-Learning 实现机器人走迷宫:决策算法(2)
     7-10 Q-Learning 实现机器人走迷宫:游戏主程序
     7-11 Deep Q Learning 实现迷宫游戏:决策算法(1)
     7-12 Deep Q Learning 实现迷宫游戏:决策算法(2)
     7-13 Deep Q Learning 实现迷宫游戏:决策算法(3)
     7-14 Deep Q Learning 实现迷宫游戏:决策算法(4)和主程序
     7-15 Policy Gradient 实现 Gym 游戏
     7-16 A3C 实现 3D 赛车游戏:成果演示
     7-17 A3C实现3D赛车游戏:讲解A3C和编写环境
     7-18 A3C实现3D赛车游戏:编写A3C算法和主程序
    第8章 知识点总结和课程延展
    知识点总结,如何学习一门知识,如何深入人工智能和TensorFlow,如何学习数学和英语,TensorFlow还能做什么,等等。
     
     8-1 总结陈词和补充
     8-2 如何学好英语
     8-3 如何学好数学
     8-4 如何学习一门技术及课程知识点总结
     8-5 深入AI和TensorFlow
    本课程已完结

    基于Python玩转人工智能最火框架 TensorFlow应用实践
    百度网盘分享地址: 链接: https://pan.baidu.com/s/1jIDAJxTiT8Sas0d0lhG0Jw 提取码: rh9v
    2米资源网